LC Bandpass Filters for 20M, 30M, 40M

Stephen E. Sussman-Fort, Ph.D. AB2EW

stevesf@optonline.net

Application

- In multi-station environments: special events, field day, portable operating, we need to protect receivers from excessively strong signals
- We place bandpass filters between the transceiver and the antenna
- Out of band signals greatly attenuated on receive, preventing receiver desensitization and overload
- On transmit, the filters should be transparent to the transmitter
- (No help for two stations on the same band) Bandpass Filters

Definition of a Filter

Filters are electrical networks that pass radio-frequency (RF) energy in certain bands and attenuate RF energy in other bands

A basic depiction of the four major filter types.

Filter Design: The Approximation Problem

First Step: Construct the transducer loss function H(s), in the Laplace-transformed frequency variable *s*, that, when evaluated in the frequency domain (**s=jω**) gives a good *approximation* to the desired response shape.

Filter Design: Network Synthesis

Second Step: Perform **network synthesis** by expanding the function H(**s**) in such a was as to identify a *network structure* comprised of inductors and capacitors.

Examples (ladder filters):

Filter Design Solutions

- Filter design is a complex mathematical process
- Evolved from the first filters designed in the 1920s for the telephone network
- Many different types of both analog and digital filters used today throughout all communications circuits
- Computer programs exist for the automated design of various types of filters
- **Elsie** is very good for inductor-capacitor (LC) filters for ham applications (*free version:* tonnesoftware.com)
- Excellent tutorial on filter design: http://www.tonnesoftware.com/downloads/FilterTutorial.pdf

Bandpass Filter Structures (selected from Elsie)

Nodal capacitor-coupled bandpass

Nodal inductor-coupled bandpass

-10

-15

-20

-25

-30 S0Hz

Filter Structures (cont'd)

Bandpass Filter Structures

Selecting a Circuit Topology (Structure)

- We want a network that has a minimum number of inductors (which are inherently lossier than capacitors)
- We want circuit element values that are neither too large nor too small so that the components are commercially available or, for inductors, can be wound easily
- To meet the filter requirements, can experiment with circuit **degree** (number of inductors plus number of capacitors)
- Can try all the circuit **structures**
- Experienced filter designers know that narrowband bandpass filters often best realized with mesh capacitor- coupled structure (also called coupled-resonator filter)

A Previous Design from QST (Lew Gordon, K4VX, Sept. 1988)

Shunt-input bandpass filter

Fig 1—Schematic diagram of the three-pole Butterworth band-pass filters.

Values given for 160, 80, 40, 20, 15, 10M (toroidal inductors and silver-mica capacitors)

No designs for WARC bands 30, 17, 12M probably because of contest emphasis

Results for 40M, 20M BPF

Filter	Loss (dB) in Band					
	40M	30M	20M	17M	15M	
40M BPF	0.5	(15.7)	32	42	47	
20M BPF	32	(7.9)	0.5	(8.5)	16	

Results inadequate for WARC band rejection

Filter Design

- Using Elsie, **design** three bandpass filters: for 20, 30, & 40M
- Sometimes we *modify* the design obtained by Elsie (circuit optimization):
 - 1. Fix certain component values and vary the others to get the best response
 - 2. Model nonideal behavior of L's and C's and obtain new design values for best response
 - 3. Combination of (1.) and (2.)
- For our filters optimization is *not* required to get good results
- No optimization in 40M filter; optimization used in 30M and 20M filters just to illustrate what can be done

Filter Construction and Tuning

- Select and measure the inductors and capacitors at the passband frequency (e.g. via AA-170 antenna analyzer)
- Build the filters, including capacitive trimmers for adjustment of series capacitors (i.e. the resonator capacitors)
- Measure and adjust the filter for best **passband** response (1:1 SWR).
- Accept the resulting **stopband** attenuation.

40M Bandpass Filter – match Elsie design values

Chip capacitors true to their stated values up to microwave frequencies 500V rating; can handle 100W (2A into 50Ω)

For **135pF** capacitors value use: 100 + 24 + (2-16) trimmer = **tunable (126 – 140)pF**

For **172pF** capacitor value use: 100 + 24 + 39 + (2-16) trimmer = **tunable (165 – 179)pF**

Filter tuning: Adjust 3 trimmers for 1:1 SWR at 7.025MHZ

40M BPF

Detail

Measuring Components at the Passband Frequency

Bandpass Filters

Measured values a function of frequency

Straight-Through Measurement

Spectrum Analyzer

Antenna Analyzer

Establish reference signal level, verify 1:1 SWR in 50 Ω system

Bandpass Filters

October 13, 2018 19

Tuning Setup and Transmission Measurement

Adjust trimmer capacitors for minimum SWR at 7.025 MHz (was quite good to begin with) Measure transmission at 20, 30, 40M

Measured Results, 40M BPF

Filter		Loss (dB) in Band				
	80M	40M	30M	20M	17M	
40M BPF	32.1	0.5	28.4	46.8	54.0	
Elsie Design:		0.4	35	59	63	

Measurement Frequencies

- 80M: 3.5 MHz
- 40M: 7.025 MHz
- 30M: 10.1 MHz

20M: 14.0 MHz

17M: 18.068 MHz

- Not quite as much out-of-band rejection as Elsie design; still quite adequate
- Errors due to: non-exact values, highfrequency coupling between the air-wound inductors, frequency dependence of silver-mica capacitor

Ideal (Elsie) vs. Measured Response 40M BPF

Capacitor Selection

Silver Mica 390pF capacitor (+/- 5%. 500V)

Bandpass Filters

October 13, 2018 25

30M BPF

Measured Results, 30M BPF

Filter		Loss (dB) in Band				
	80M	40M	30M	20M	17M	
30M BPF	49.0	30.6	0.4	34.2	55.4	
Elsie Design	55	35	0.6	45	65	
Optimized	52	33	0.6	40	61	
			Î			
	note					

Ideal (Elsie) vs. Measured Response 30M BPF

20M Bandpass Filter

October 13, 2018 29

20M BPF

Measured Results, 20M BPF

Filter	Loss (dB) in Band					
	40M	30M	20M	17M	15M	
20M BPF	36	23	0.4	19	33	
Elsie Design	43	28	0.5	32	47	
Optimized	37	24	0.5	30	49	

- Not as much out-of-band rejection as Elsie or optimized design
- Errors due to: high-frequency coupling between the air-wound inductors (shielding probably inadequate)

Ideal (Elsie) vs. Measured Response 20M BPF

Summary

40M BPF

30M BPF

20M BPF

Summary

Bandpass Filters

October 13, 2018 35

Conclusions

- Elsie program can design bandpass filters for transceivers
- Optimization of the design is possible but not necessary
- Have choice of air-core or toroidal inductors; leaded or chip capacitors
- Must be aware of component value variation with frequency
- Match component values as closely as possible; allow tuning of series capacitances by using trimmers; we avoid inductance adjustment
- Design approach here is to get best passband result and accept stopband attenuation
- If more stopband attenuation is required, can design a more complex filter
- Filters like these are also *commercially available*